2.1.1.1.1. emicroml.modelling.cbed.distortion.estimation

For training machine learning models for distortion estimation in CBED.

Functions

combine_ml_dataset_files

Combine files storing machine learning datasets.

generate_and_save_ml_dataset

Generate a machine learning dataset.

load_ml_model_from_file

Load a machine learning model from a file.

load_ml_model_from_state_dict

Load a machine learning model from a dictionary

ml_data_dict_to_distortion_models

Convert a dictionary representation of ML data instances to a sequence of distortion models.

ml_data_dict_to_signals

Convert a dictionary representation of ML data instances to a sequence of Hyperspy signals.

normalize_normalizable_elems_in_ml_data_dict

Normalize in-place normalizable features of a dictionary representation of machine learning data instances.

split_ml_dataset_file

Split file storing a machine learning dataset.

unnormalize_normalizable_elems_in_ml_data_dict

Unnormalize in-place normalizable features of a dictionary representation of machine learning data instances.

Classes

DefaultCBEDPatternGenerator

The default class of random "fake" CBED pattern generators.

DefaultDistortionModelGenerator

The default class of random distortion model generators.

MLDataset

A wrapper to the PyTorch dataset class torch.utils.data.Dataset.

MLDatasetManager

A machine learning dataset manager.

MLModel

A machine learning model for distortion estimation in CBED.

MLModelTester

A machine learning model tester.

MLModelTrainer

A machine learning model trainer.