2.1.1.1.1.15. emicroml.modelling.cbed.distortion.estimation.MLModelTester
- class MLModelTester(ml_dataset_manager, device_name=None, output_dirname='results', misc_model_testing_metadata={}, skip_validation_and_conversion=False)[source]
Bases:
_MLModelTesterA machine learning model tester.
The current class is a subclass of
fancytypes.PreSerializableAndUpdatable.The current class represents a machine learning (ML) model tester that can be used to test ML models represented by the class
emicroml.modelling.cbed.distortion.estimation.MLModel.See the documentation for the method
emicroml.modelling.cbed.distortion.estimation.MLModelTester.test_ml_model()for a discussion on how performance metrics are calculated and tracked during ML model testing.- Parameters:
- ml_dataset_manager
emicroml.modelling.cbed.distortion.estimation.MLDatasetManager The ML dataset manager to use during ML model testing. The ML dataset manager must specify at least a ML testing dataset. Any ML training and validation datasets specified are ignored.
Note that
ml_dataset_managerstores an integerml_dataset_manager.core_attrs["mini_batch_size"]which specifies the mini-batch size to be used in evaluating ML models. This is different from the mini-batch size used for calculating mini-batch losses during testing, which is always equal to unity. Hence, each mini-batch loss is equivalent to the loss of a single ML data instance. Generally speaking, the higher the value ofml_dataset_manager.core_attrs["mini_batch_size"], the faster the testing of ML models since more parallelization is being used.- device_namestr | None, optional
This parameter specifies the device to be used to perform computationally intensive calls to PyTorch functions and to store intermediate arrays of the type
torch.Tensor. Ifdevice_nameis a string, then it is the name of the device to be used, e.g.”cuda”or”cpu”. Ifdevice_nameis set toNoneand a GPU device is available, then a GPU device is to be used. Otherwise, the CPU is used.- output_dirnamestr, optional
The relative or absolute path to the directory in which all output files are saved.
- misc_model_testing_metadatadict, optional
Miscellaneous ML model testing metadata. Can be any dict object that is serializable, i.e.
import json; json.dumps(misc_model_testing_metadata)must not raise an exception. Note thatmisc_model_testing_metadatais not used to test ML models, but is serialized and saved as output. See the documentation for the methodemicroml.modelling.cbed.distortion.estimation.MLModelTester.test_ml_model(), for details on howmisc_model_testing_metadatais saved as output.- skip_validation_and_conversionbool, optional
Let
validation_and_conversion_funcsandcore_attrsdenote the attributesvalidation_and_conversion_funcsandcore_attrsrespectively, both of which being dict objects.Let
params_to_be_mapped_to_core_attrsdenote the dict representation of the constructor parameters excluding the parameterskip_validation_and_conversion, where each dict keykeyis a different constructor parameter name, excluding the name"skip_validation_and_conversion", andparams_to_be_mapped_to_core_attrs[key]would yield the value of the constructor parameter with the name given bykey.If
skip_validation_and_conversionis set toFalse, then for each keykeyinparams_to_be_mapped_to_core_attrs,core_attrs[key]is set tovalidation_and_conversion_funcs[key] (params_to_be_mapped_to_core_attrs).Otherwise, if
skip_validation_and_conversionis set toTrue, thencore_attrsis set toparams_to_be_mapped_to_core_attrs.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofparams_to_be_mapped_to_core_attrs, as it is guaranteed that no copies or conversions are made in this case.
- ml_dataset_manager
- Attributes:
core_attrsdict: The “core attributes”.
de_pre_serialization_funcsdict: The de-pre-serialization functions.
pre_serialization_funcsdict: The pre-serialization functions.
validation_and_conversion_funcsdict: The validation and conversion functions.
Methods
de_pre_serialize([serializable_rep, ...])Construct an instance from a serializable representation.
dump([filename, overwrite])Serialize instance and save the result in a JSON file.
dumps()Serialize instance.
get_core_attrs([deep_copy])Return the core attributes.
Return the de-pre-serialization functions.
Return the pre-serialization functions.
Return the validation and conversion functions.
load([filename, skip_validation_and_conversion])Construct an instance from a serialized representation that is stored in a JSON file.
loads([serialized_rep, ...])Construct an instance from a serialized representation.
Pre-serialize instance.
test_ml_model(ml_model)Test a machine learning model.
update(new_core_attr_subset_candidate[, ...])Update a subset of the core attributes.
execute_post_core_attrs_update_actions
Methods
Construct an instance from a serializable representation.
Serialize instance and save the result in a JSON file.
Serialize instance.
execute_post_core_attrs_update_actionsReturn the core attributes.
Return the de-pre-serialization functions.
Return the pre-serialization functions.
Return the validation and conversion functions.
Construct an instance from a serialized representation that is stored in a JSON file.
Construct an instance from a serialized representation.
Pre-serialize instance.
Test a machine learning model.
Update a subset of the core attributes.
Attributes
dict: The "core attributes".
dict: The de-pre-serialization functions.
dict: The pre-serialization functions.
dict: The validation and conversion functions.
- property core_attrs
dict: The “core attributes”.
The keys of
core_attrsare the same as the attributevalidation_and_conversion_funcs, which is also a dict object.Note that
core_attrsshould be considered read-only.
- property de_pre_serialization_funcs
dict: The de-pre-serialization functions.
de_pre_serialization_funcshas the same keys as the attributevalidation_and_conversion_funcs, which is also a dict object.Let
validation_and_conversion_funcsandpre_serialization_funcsdenote the attributesvalidation_and_conversion_funcspre_serialization_funcsrespectively, the last of which being a dict object as well.Let
core_attrs_candidate_1be any dict object that has the same keys asvalidation_and_conversion_funcs, where for each dict keykeyincore_attrs_candidate_1,validation_and_conversion_funcs[key](core_attrs_candidate_1)does not raise an exception.Let
serializable_repbe a dict object that has the same keys ascore_attrs_candidate_1, where for each dict keykeyincore_attrs_candidate_1,serializable_rep[key]is set topre_serialization_funcs[key](core_attrs_candidate_1[key]).The items of
de_pre_serialization_funcsare expected to be set to callable objects that would lead tode_pre_serialization_funcs[key](serializable_rep[key])not raising an exception for each dict keykeyinserializable_rep.Let
core_attrs_candidate_2be a dict object that has the same keys asserializable_rep, where for each dict keykeyinvalidation_and_conversion_funcs,core_attrs_candidate_2[key]is set tode_pre_serialization_funcs[key](serializable_rep[key]).The items of
de_pre_serialization_funcsare also expected to be set to callable objects that would lead tovalidation_and_conversion_funcs[key](core_attrs_candidate_2)not raising an exception for each dict keykeyincore_attrs_candidate_2.Note that
de_pre_serialization_funcsshould be considered read-only.
- classmethod de_pre_serialize(serializable_rep={}, skip_validation_and_conversion=False)
Construct an instance from a serializable representation.
- Parameters:
- serializable_repdict, optional
A dict object that has the same keys as the attribute
validation_and_conversion_funcs, which is also a dict object.Let
validation_and_conversion_funcsandde_pre_serialization_funcsdenote the attributesvalidation_and_conversion_funcsde_pre_serialization_funcsrespectively, the last of which being a dict object as well.The items of
serializable_repare expected to be objects that would lead tode_pre_serialization_funcs[key](serializable_rep[key])not raising an exception for each dict keykeyinserializable_rep.Let
core_attrs_candidatebe a dict object that has the same keys asserializable_rep, where for each dict keykeyinserializable_rep,core_attrs_candidate[key]is set to de_pre_serialization_funcs[key](serializable_rep[key])``.The items of
serializable_repare also expected to be set to objects that would lead tovalidation_and_conversion_funcs[key](core_attrs_candidate)not raising an exception for each dict keykeyinserializable_rep.- skip_validation_and_conversionbool, optional
Let
core_attrsdenote the attributecore_attrs, which is a dict object.If
skip_validation_and_conversionis set toFalse, then for each keykeyinserializable_rep,core_attrs[key]is set tovalidation_and_conversion_funcs[key] (core_attrs_candidate), withvalidation_and_conversion_funcsandcore_attrs_candidate_1being introduced in the above description ofserializable_rep.Otherwise, if
skip_validation_and_conversionis set toTrue, thencore_attrsis set tocore_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofcore_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.
- Returns:
- instance_of_current_clsCurrent class
An instance constructed from the serializable representation
serializable_rep.
- dump(filename='serialized_rep_of_fancytype.json', overwrite=False)
Serialize instance and save the result in a JSON file.
- Parameters:
- filenamestr, optional
The relative or absolute path to the JSON file in which to store the serialized representation of an instance.
- overwritebool, optional
If
overwriteis set toFalseand a file exists at the pathfilename, then the serialized instance is not written to that file and an exception is raised. Otherwise, the serialized instance will be written to that file barring no other issues occur.
- Returns:
- dumps()
Serialize instance.
- Returns:
- serialized_repdict
A serialized representation of an instance.
- get_core_attrs(deep_copy=True)
Return the core attributes.
- Parameters:
- deep_copybool, optional
Let
core_attrsdenote the attributecore_attrs, which is a dict object.If
deep_copyis set toTrue, then a deep copy ofcore_attrsis returned. Otherwise, a shallow copy ofcore_attrsis returned.
- Returns:
- core_attrsdict
The attribute
core_attrs.
- classmethod get_de_pre_serialization_funcs()
Return the de-pre-serialization functions.
- Returns:
- de_pre_serialization_funcsdict
The attribute
de_pre_serialization_funcs.
- classmethod get_pre_serialization_funcs()
Return the pre-serialization functions.
- Returns:
- pre_serialization_funcsdict
The attribute
pre_serialization_funcs.
- classmethod get_validation_and_conversion_funcs()
Return the validation and conversion functions.
- Returns:
- validation_and_conversion_funcsdict
The attribute
validation_and_conversion_funcs.
- classmethod load(filename='serialized_rep_of_fancytype.json', skip_validation_and_conversion=False)
Construct an instance from a serialized representation that is stored in a JSON file.
Users can save serialized representations to JSON files using the method
fancytypes.PreSerializable.dump().- Parameters:
- filenamestr, optional
The relative or absolute path to the JSON file that is storing the serialized representation of an instance.
filenameis expected to be such thatjson.load(open(filename, "r"))does not raise an exception.Let
serializable_rep=json.load(open(filename, "r")).Let
validation_and_conversion_funcsandde_pre_serialization_funcsdenote the attributesvalidation_and_conversion_funcsde_pre_serialization_funcsrespectively, both of which being dict objects as well.filenameis also expected to be such thatde_pre_serialization_funcs[key](serializable_rep[key])does not raise an exception for each dict keykeyinde_pre_serialization_funcs.Let
core_attrs_candidatebe a dict object that has the same keys asde_pre_serialization_funcs, where for each dict keykeyinserializable_rep,core_attrs_candidate[key]is set to de_pre_serialization_funcs[key](serializable_rep[key])``.filenameis also expected to be such thatvalidation_and_conversion_funcs[key](core_attrs_candidate)does not raise an exception for each dict keykeyinserializable_rep.- skip_validation_and_conversionbool, optional
Let
core_attrsdenote the attributecore_attrs, which is a dict object.Let
core_attrs_candidatebe as defined in the above description offilename.If
skip_validation_and_conversionis set toFalse, then for each keykeyincore_attrs_candidate,core_attrs[key]is set tovalidation_and_conversion_funcs[key] (core_attrs_candidate), , withvalidation_and_conversion_funcsandcore_attrs_candidatebeing introduced in the above description offilename.Otherwise, if
skip_validation_and_conversionis set toTrue, thencore_attrsis set tocore_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofcore_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.
- Returns:
- instance_of_current_clsCurrent class
An instance constructed from the serialized representation stored in the JSON file.
- classmethod loads(serialized_rep='{}', skip_validation_and_conversion=False)
Construct an instance from a serialized representation.
Users can generate serialized representations using the method
dumps().- Parameters:
- serialized_repstr | bytes | bytearray, optional
The serialized representation.
serialized_repis expected to be such thatjson.loads(serialized_rep)does not raise an exception.Let
serializable_rep=json.loads(serialized_rep).Let
validation_and_conversion_funcsandde_pre_serialization_funcsdenote the attributesvalidation_and_conversion_funcsde_pre_serialization_funcsrespectively, both of which being dict objects as well.serialized_repis also expected to be such thatde_pre_serialization_funcs[key](serializable_rep[key])does not raise an exception for each dict keykeyinde_pre_serialization_funcs.Let
core_attrs_candidatebe a dict object that has the same keys asserializable_rep, where for each dict keykeyinde_pre_serialization_funcs,core_attrs_candidate[key]is set to de_pre_serialization_funcs[key](serializable_rep[key])``.serialized_repis also expected to be such thatvalidation_and_conversion_funcs[key](core_attrs_candidate)does not raise an exception for each dict keykeyinserializable_rep.- skip_validation_and_conversionbool, optional
Let
core_attrsdenote the attributecore_attrs, which is a dict object.If
skip_validation_and_conversionis set toFalse, then for each keykeyincore_attrs_candidate,core_attrs[key]is set tovalidation_and_conversion_funcs[key] (core_attrs_candidate), withvalidation_and_conversion_funcsandcore_attrs_candidate_1being introduced in the above description ofserialized_rep.Otherwise, if
skip_validation_and_conversionis set toTrue, thencore_attrsis set tocore_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofcore_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.
- Returns:
- instance_of_current_clsCurrent class
An instance constructed from the serialized representation.
- property pre_serialization_funcs
dict: The pre-serialization functions.
pre_serialization_funcshas the same keys as the attributevalidation_and_conversion_funcs, which is also a dict object.Let
validation_and_conversion_funcsandcore_attrsdenote the attributesvalidation_and_conversion_funcsandcore_attrsrespectively, the last of which being a dict object as well.For each dict key
keyincore_attrs,pre_serialization_funcs[key](core_attrs[key])is expected to yield a serializable object, i.e. it should yield an object that can be passed into the functionjson.dumpswithout raising an exception.Note that
pre_serialization_funcsshould be considered read-only.
- pre_serialize()
Pre-serialize instance.
- Returns:
- serializable_repdict
A serializable representation of an instance.
- test_ml_model(ml_model)[source]
Test a machine learning model.
See the summary documentation of the class
emicroml.modelling.cbed.distortion.estimation.MLModelTesterfor additional context.Let
core_attrsbe the attributecore_attrs,output_dirnamebecore_attrs["output_dirname"], andmisc_model_testing_metadatabecore_attrs["misc_model_testing_metadata"].The only output file that is generated by the end of the ML model testing is the ML model testing summary output data file, which is an HDF5 file generated at the file path
output_dirname+"/ml_model_testing_summary_output_data.h5". The HDF5 file is guaranteed to contain the following HDF5 objects:ml_model_tester_params: <HDF5 1D dataset>
total_num_ml_testing_data_instances: <HDF5 0D dataset>
ml_data_instance_metrics: <HDF5 group>
testing: <HDF5 group>
epes_of_adjusted_distortion_fields <HDF5 1D dataset>
dim_0: “ml testing data instance idx”
Note that the sub-bullet points listed immediately below a given HDF5 dataset display the HDF5 attributes associated with said HDF5 dataset. Some HDF5 datasets have attributes with names of the form
"dim_{}".format(i)withibeing an integer. Attribute"dim_{}".format(i)of a given HDF5 dataset labels theith dimension of the underlying array of the dataset.The HDF5 dataset at the HDF5 path
"/ml_model_tester_params"stores a serialized version of the attributecore_attrs, which is essentially the construction parameters used to construct an instance of the current class. From the output HDF5 file, users can reconstruct the instance of the current class that generated said output file by:import h5pywrappers import emicroml.modelling.cbed.distortion.estimation filename = (output_dirname +"/ml_model_testing_summary_output_data.h5") kwargs = {"filename": filename, "path_in_file": "ml_model_tester_params"} json_document_id = h5pywrappers.obj.ID(**kwargs) serializable_rep = h5pywrappers.json.document.load(json_document_id) MLModelTester = \ emicroml.modelling.cbed.distortion.estimation.MLModelTester ml_model_tester = \ MLModelTester.de_pre_serialize(serializable_rep)
where
ml_model_testeris the reconstructed instance of the current class, andserializable_repis a “pre-serialized” version of it. See the documentation for the classfancytypes.PreSerializablefor a discussion on pre-serialization.The zero-dimensional HDF5 dataset, i.e. scalar, at the HDF5 path
"/total_num_ml_testing_data_instances"stores the total number of ML testing data instances.The HDF5 group at the HDF5 path
"/ml_data_instance_metrics"stores the performance metrics that are tracked during testing.The HDF5 dataset at the HDF5 path
"/ml_data_instance_metrics/testing/epes_of_adjusted_distortion_fields"stores the end-point errors (EPEs) of the “adjusted” standard distortion fields specified by the predicted standard coordinate transformation parameter sets, during testing. For every nonnegative integermless than the the total number of ML testing data instances, themth element of the aforementioned HDF5 dataset is the EPE of the adjusted standard distortion field specified by themth predicted standard standard coordinate transformation set, during testing. See the summary documentation of the classemicroml.modelling.cbed.distortion.estimation.MLModelTrainerfor a definition of an adjusted standard distortion field, and how the EPE is calculated exactly.- Parameters:
- ml_model
emicroml.modelling.cbed.distortion.estimation.MLModel The ML model to test.
- ml_model
- update(new_core_attr_subset_candidate, skip_validation_and_conversion=False)
Update a subset of the core attributes.
- Parameters:
- new_core_attr_subset_candidatedict, optional
A dict object.
- skip_validation_and_conversionbool, optional
Let
validation_and_conversion_funcsandcore_attrsdenote the attributesvalidation_and_conversion_funcsandcore_attrsrespectively, both of which being dict objects.If
skip_validation_and_conversionis set toFalse, then for each keykeyincore_attrsthat is also innew_core_attr_subset_candidate,core_attrs[key]is set tovalidation_and_conversion_funcs[key] (new_core_attr_subset_candidate).Otherwise, if
skip_validation_and_conversionis set toTrue, then for each keykeyincore_attrsthat is also innew_core_attr_subset_candidate,core_attrs[key]is set tonew_core_attr_subset_candidate[key]. This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofnew_core_attr_subset_candidate, as it is guaranteed that no copies or conversions are made in this case.
- property validation_and_conversion_funcs
dict: The validation and conversion functions.
The keys of
validation_and_conversion_funcsare the names of the constructor parameters, excludingskip_validation_and_conversionif it exists as a construction parameter.Let
core_attrsdenote the attributecore_attrs, which is also a dict object.For each dict key
keyincore_attrs,validation_and_conversion_funcs[key](core_attrs)is expected to not raise an exception.Note that
validation_and_conversion_funcsshould be considered read-only.