2.1.1.1.1.11. emicroml.modelling.cbed.distortion.estimation.DefaultDistortionModelGenerator
- class DefaultDistortionModelGenerator(reference_pt=(0.5, 0.5), rng_seed=None, sampling_grid_dims_in_pixels=(512, 512), least_squares_alg_params=None, device_name=None, skip_validation_and_conversion=False)[source]
Bases:
_DefaultDistortionModelGenerator
The default class of random distortion model generators.
The current class is a subclass of
fancytypes.PreSerializableAndUpdatable
.The current class represents the default random distortion model generators used to generate random “fake” CBED patterns. The current class is used in the class
emicroml.modelling.cbed.distortion.estimation.DefaultCBEDPatternGenerator
, with the latter class representing the default random fake CBED pattern generators. See the documentation for the latter class for further discussion on the default random fake CBED pattern generators.A random number generator is used to generate random distortion models. Upon construction of an instance of the current class, or core attribute update via the method
update()
, a random numpy generatorrng
is constructed viaimport numpy; rng=numpy.random.default_rng(rng_seed)
, whererng_seed
is the construction parameter or core attribute that specifies the seed used in the random number generator. See the documentation for the classcore_attrs
for a discussion on core attributes.The distortion models generated by instances of the current class are “standard”, meaning that the corresponding coordinate transformation \(T_{⌑;x}\left(u_{x},u_{y}\right)\) that describes the optical distortions can be specified equivalently by an instance
standard_coord_transform_params
ofdistoptica.StandardCoordTransformParams
. The distortion models are instances of the classdistoptica.DistortionModel
. See the documentation for the classdistoptica.DistortionModel
for further discussion on how the optical distortions are modelled.The construction parameters of
distoptica.StandardCoordTransformParams
that specify \(T_{⌑;x}\left(u_{x},u_{y}\right)\) arecenter
,quadratic_radial_distortion_amplitude
,elliptical_distortion_vector
,spiral_distortion_amplitude
, andparabolic_distortion_vector
. For each candidate distortion model, these parameters are calculated byimport numpy as np r_c_D = rng.normal(loc=0, scale=1/20) phi_c_D = rng.uniform(low=0, high=2*np.pi) x_c_D = reference_pt[0] + r_c_D*np.cos(phi_c_D) y_c_D = reference_pt[1] + r_c_D*np.sin(phi_c_D) center = (x_c_D, y_c_D) quadratic_radial_distortion_amplitude = rng.uniform(low=-0.5, high=2) spiral_distortion_amplitude = rng.uniform(low=-1.5, high=1.5) amplitude = rng.uniform(low=0, high=0.2) phase = rng.uniform(low=0, high=np.pi) elliptical_distortion_vector = (amplitude*np.cos(2*phase), amplitude*np.sin(2*phase)) amplitude = rng.uniform(low=0, high=0.4) phase = rng.uniform(low=0, high=2*np.pi) parabolic_distortion_vector = (amplitude*np.cos(phase), amplitude*np.sin(phase))
where
reference_pt
is a pair of floating-point numbers that users specify as a construction parameter of the current class.If the floating-point numbers stored in the instance attribute
distoptica.DistortionModel.mask_frame_of_distorted_then_resampled_images
of the resulting candidate distortion model are less than or equal to1/8
, then the candidate distortion model is accepted as valid and returned as output after calling the methodemicroml.modelling.cbed.distortion.estimation.DefaultDistortionModelGenerator.generate()
. Otherwise, the candidate distortion model is rejected, and new candidate distortion models are generated until either: one of them is accepted as valid; or 10 candidate distortion models have been rejected in total. In the latter case, an exception is raised. See the documentation for the attributedistoptica.DistortionModel.mask_frame_of_distorted_then_resampled_images
for a description of said attribute.- Parameters:
- reference_ptarray_like (float, shape=(2,)), optional
A reference point from which to randomly generate distortion centers. See the summary documentation above for context.
- rng_seedint | None, optional
rng_seed
specifies the seed used in the random number generator.- sampling_grid_dims_in_pixelsarray_like (int, shape=(2,)), optional
The dimensions of the sampling grid, in units of pixels, used for all distortion models.
- least_squares_alg_params
distoptica.LeastSquaresAlgParams
| None, optional least_squares_alg_params
specifies the parameters of the least-squares algorithm to be used to calculate the mappings of fractional Cartesian coordinates of distorted images to those of the corresponding undistorted images. Ifleast_squares_alg_params
is set toNone
, then the parameter will be reassigned to the valuedistoptica.LeastSquaresAlgParams()
. See the documentation for the classdistoptica.LeastSquaresAlgParams
for details on the parameters of the least-squares algorithm.- device_namestr | None, optional
This parameter specifies the device to be used to perform computationally intensive calls to PyTorch functions and where to store attributes of the type
torch.Tensor
for each distortion model represented by the classdistoptica.DistortionModel
. Ifdevice_name
is a string, then it is the name of the device to be used, e.g.”cuda”
or”cpu”
. Ifdevice_name
is set toNone
and a GPU device is available, then a GPU device is to be used. Otherwise, the CPU is used.- skip_validation_and_conversionbool, optional
Let
validation_and_conversion_funcs
andcore_attrs
denote the attributesvalidation_and_conversion_funcs
andcore_attrs
respectively, both of which being dict objects.Let
params_to_be_mapped_to_core_attrs
denote the dict representation of the constructor parameters excluding the parameterskip_validation_and_conversion
, where each dict keykey
is a different constructor parameter name, excluding the name"skip_validation_and_conversion"
, andparams_to_be_mapped_to_core_attrs[key]
would yield the value of the constructor parameter with the name given bykey
.If
skip_validation_and_conversion
is set toFalse
, then for each keykey
inparams_to_be_mapped_to_core_attrs
,core_attrs[key]
is set tovalidation_and_conversion_funcs[key] (params_to_be_mapped_to_core_attrs)
.Otherwise, if
skip_validation_and_conversion
is set toTrue
, thencore_attrs
is set toparams_to_be_mapped_to_core_attrs.copy()
. This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofparams_to_be_mapped_to_core_attrs
, as it is guaranteed that no copies or conversions are made in this case.
- Attributes:
core_attrs
dict: The “core attributes”.
de_pre_serialization_funcs
dict: The de-pre-serialization functions.
pre_serialization_funcs
dict: The pre-serialization functions.
validation_and_conversion_funcs
dict: The validation and conversion functions.
Methods
de_pre_serialize
([serializable_rep, ...])Construct an instance from a serializable representation.
dump
([filename, overwrite])Serialize instance and save the result in a JSON file.
dumps
()Serialize instance.
generate
()Generate a random distortion model.
get_core_attrs
([deep_copy])Return the core attributes.
Return the de-pre-serialization functions.
Return the pre-serialization functions.
Return the validation and conversion functions.
load
([filename, skip_validation_and_conversion])Construct an instance from a serialized representation that is stored in a JSON file.
loads
([serialized_rep, ...])Construct an instance from a serialized representation.
Pre-serialize instance.
update
(new_core_attr_subset_candidate[, ...])Update a subset of the core attributes.
execute_post_core_attrs_update_actions
Methods
Construct an instance from a serializable representation.
Serialize instance and save the result in a JSON file.
Serialize instance.
execute_post_core_attrs_update_actions
Generate a random distortion model.
Return the core attributes.
Return the de-pre-serialization functions.
Return the pre-serialization functions.
Return the validation and conversion functions.
Construct an instance from a serialized representation that is stored in a JSON file.
Construct an instance from a serialized representation.
Pre-serialize instance.
Update a subset of the core attributes.
Attributes
dict: The "core attributes".
dict: The de-pre-serialization functions.
dict: The pre-serialization functions.
dict: The validation and conversion functions.
- property core_attrs
dict: The “core attributes”.
The keys of
core_attrs
are the same as the attributevalidation_and_conversion_funcs
, which is also a dict object.Note that
core_attrs
should be considered read-only.
- property de_pre_serialization_funcs
dict: The de-pre-serialization functions.
de_pre_serialization_funcs
has the same keys as the attributevalidation_and_conversion_funcs
, which is also a dict object.Let
validation_and_conversion_funcs
andpre_serialization_funcs
denote the attributesvalidation_and_conversion_funcs
pre_serialization_funcs
respectively, the last of which being a dict object as well.Let
core_attrs_candidate_1
be any dict object that has the same keys asvalidation_and_conversion_funcs
, where for each dict keykey
incore_attrs_candidate_1
,validation_and_conversion_funcs[key](core_attrs_candidate_1)
does not raise an exception.Let
serializable_rep
be a dict object that has the same keys ascore_attrs_candidate_1
, where for each dict keykey
incore_attrs_candidate_1
,serializable_rep[key]
is set topre_serialization_funcs[key](core_attrs_candidate_1[key])
.The items of
de_pre_serialization_funcs
are expected to be set to callable objects that would lead tode_pre_serialization_funcs[key](serializable_rep[key])
not raising an exception for each dict keykey
inserializable_rep
.Let
core_attrs_candidate_2
be a dict object that has the same keys asserializable_rep
, where for each dict keykey
invalidation_and_conversion_funcs
,core_attrs_candidate_2[key]
is set tode_pre_serialization_funcs[key](serializable_rep[key])
.The items of
de_pre_serialization_funcs
are also expected to be set to callable objects that would lead tovalidation_and_conversion_funcs[key](core_attrs_candidate_2)
not raising an exception for each dict keykey
incore_attrs_candidate_2
.Note that
de_pre_serialization_funcs
should be considered read-only.
- classmethod de_pre_serialize(serializable_rep={}, skip_validation_and_conversion=False)
Construct an instance from a serializable representation.
- Parameters:
- serializable_repdict, optional
A dict object that has the same keys as the attribute
validation_and_conversion_funcs
, which is also a dict object.Let
validation_and_conversion_funcs
andde_pre_serialization_funcs
denote the attributesvalidation_and_conversion_funcs
de_pre_serialization_funcs
respectively, the last of which being a dict object as well.The items of
serializable_rep
are expected to be objects that would lead tode_pre_serialization_funcs[key](serializable_rep[key])
not raising an exception for each dict keykey
inserializable_rep
.Let
core_attrs_candidate
be a dict object that has the same keys asserializable_rep
, where for each dict keykey
inserializable_rep
,core_attrs_candidate[key]
is set to de_pre_serialization_funcs[key](serializable_rep[key])``.The items of
serializable_rep
are also expected to be set to objects that would lead tovalidation_and_conversion_funcs[key](core_attrs_candidate)
not raising an exception for each dict keykey
inserializable_rep
.- skip_validation_and_conversionbool, optional
Let
core_attrs
denote the attributecore_attrs
, which is a dict object.If
skip_validation_and_conversion
is set toFalse
, then for each keykey
inserializable_rep
,core_attrs[key]
is set tovalidation_and_conversion_funcs[key] (core_attrs_candidate)
, withvalidation_and_conversion_funcs
andcore_attrs_candidate_1
being introduced in the above description ofserializable_rep
.Otherwise, if
skip_validation_and_conversion
is set toTrue
, thencore_attrs
is set tocore_attrs_candidate.copy()
. This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofcore_attrs_candidate
, as it is guaranteed that no copies or conversions are made in this case.
- Returns:
- instance_of_current_clsCurrent class
An instance constructed from the serializable representation
serializable_rep
.
- dump(filename='serialized_rep_of_fancytype.json', overwrite=False)
Serialize instance and save the result in a JSON file.
- Parameters:
- filenamestr, optional
The relative or absolute path to the JSON file in which to store the serialized representation of an instance.
- overwritebool, optional
If
overwrite
is set toFalse
and a file exists at the pathfilename
, then the serialized instance is not written to that file and an exception is raised. Otherwise, the serialized instance will be written to that file barring no other issues occur.
- Returns:
- dumps()
Serialize instance.
- Returns:
- serialized_repdict
A serialized representation of an instance.
- generate()
Generate a random distortion model.
See the summary documentation for the current class for details on how distortion models are randomly generated.
- Returns:
- distortion_model
distoptica.DistortionModel
The distortion model.
- distortion_model
- get_core_attrs(deep_copy=True)
Return the core attributes.
- Parameters:
- deep_copybool, optional
Let
core_attrs
denote the attributecore_attrs
, which is a dict object.If
deep_copy
is set toTrue
, then a deep copy ofcore_attrs
is returned. Otherwise, a shallow copy ofcore_attrs
is returned.
- Returns:
- core_attrsdict
The attribute
core_attrs
.
- classmethod get_de_pre_serialization_funcs()
Return the de-pre-serialization functions.
- Returns:
- de_pre_serialization_funcsdict
The attribute
de_pre_serialization_funcs
.
- classmethod get_pre_serialization_funcs()
Return the pre-serialization functions.
- Returns:
- pre_serialization_funcsdict
The attribute
pre_serialization_funcs
.
- classmethod get_validation_and_conversion_funcs()
Return the validation and conversion functions.
- Returns:
- validation_and_conversion_funcsdict
The attribute
validation_and_conversion_funcs
.
- classmethod load(filename='serialized_rep_of_fancytype.json', skip_validation_and_conversion=False)
Construct an instance from a serialized representation that is stored in a JSON file.
Users can save serialized representations to JSON files using the method
fancytypes.PreSerializable.dump()
.- Parameters:
- filenamestr, optional
The relative or absolute path to the JSON file that is storing the serialized representation of an instance.
filename
is expected to be such thatjson.load(open(filename, "r"))
does not raise an exception.Let
serializable_rep=json.load(open(filename, "r"))
.Let
validation_and_conversion_funcs
andde_pre_serialization_funcs
denote the attributesvalidation_and_conversion_funcs
de_pre_serialization_funcs
respectively, both of which being dict objects as well.filename
is also expected to be such thatde_pre_serialization_funcs[key](serializable_rep[key])
does not raise an exception for each dict keykey
inde_pre_serialization_funcs
.Let
core_attrs_candidate
be a dict object that has the same keys asde_pre_serialization_funcs
, where for each dict keykey
inserializable_rep
,core_attrs_candidate[key]
is set to de_pre_serialization_funcs[key](serializable_rep[key])``.filename
is also expected to be such thatvalidation_and_conversion_funcs[key](core_attrs_candidate)
does not raise an exception for each dict keykey
inserializable_rep
.- skip_validation_and_conversionbool, optional
Let
core_attrs
denote the attributecore_attrs
, which is a dict object.Let
core_attrs_candidate
be as defined in the above description offilename
.If
skip_validation_and_conversion
is set toFalse
, then for each keykey
incore_attrs_candidate
,core_attrs[key]
is set tovalidation_and_conversion_funcs[key] (core_attrs_candidate)
, , withvalidation_and_conversion_funcs
andcore_attrs_candidate
being introduced in the above description offilename
.Otherwise, if
skip_validation_and_conversion
is set toTrue
, thencore_attrs
is set tocore_attrs_candidate.copy()
. This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofcore_attrs_candidate
, as it is guaranteed that no copies or conversions are made in this case.
- Returns:
- instance_of_current_clsCurrent class
An instance constructed from the serialized representation stored in the JSON file.
- classmethod loads(serialized_rep='{}', skip_validation_and_conversion=False)
Construct an instance from a serialized representation.
Users can generate serialized representations using the method
dumps()
.- Parameters:
- serialized_repstr | bytes | bytearray, optional
The serialized representation.
serialized_rep
is expected to be such thatjson.loads(serialized_rep)
does not raise an exception.Let
serializable_rep=json.loads(serialized_rep)
.Let
validation_and_conversion_funcs
andde_pre_serialization_funcs
denote the attributesvalidation_and_conversion_funcs
de_pre_serialization_funcs
respectively, both of which being dict objects as well.serialized_rep
is also expected to be such thatde_pre_serialization_funcs[key](serializable_rep[key])
does not raise an exception for each dict keykey
inde_pre_serialization_funcs
.Let
core_attrs_candidate
be a dict object that has the same keys asserializable_rep
, where for each dict keykey
inde_pre_serialization_funcs
,core_attrs_candidate[key]
is set to de_pre_serialization_funcs[key](serializable_rep[key])``.serialized_rep
is also expected to be such thatvalidation_and_conversion_funcs[key](core_attrs_candidate)
does not raise an exception for each dict keykey
inserializable_rep
.- skip_validation_and_conversionbool, optional
Let
core_attrs
denote the attributecore_attrs
, which is a dict object.If
skip_validation_and_conversion
is set toFalse
, then for each keykey
incore_attrs_candidate
,core_attrs[key]
is set tovalidation_and_conversion_funcs[key] (core_attrs_candidate)
, withvalidation_and_conversion_funcs
andcore_attrs_candidate_1
being introduced in the above description ofserialized_rep
.Otherwise, if
skip_validation_and_conversion
is set toTrue
, thencore_attrs
is set tocore_attrs_candidate.copy()
. This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofcore_attrs_candidate
, as it is guaranteed that no copies or conversions are made in this case.
- Returns:
- instance_of_current_clsCurrent class
An instance constructed from the serialized representation.
- property pre_serialization_funcs
dict: The pre-serialization functions.
pre_serialization_funcs
has the same keys as the attributevalidation_and_conversion_funcs
, which is also a dict object.Let
validation_and_conversion_funcs
andcore_attrs
denote the attributesvalidation_and_conversion_funcs
andcore_attrs
respectively, the last of which being a dict object as well.For each dict key
key
incore_attrs
,pre_serialization_funcs[key](core_attrs[key])
is expected to yield a serializable object, i.e. it should yield an object that can be passed into the functionjson.dumps
without raising an exception.Note that
pre_serialization_funcs
should be considered read-only.
- pre_serialize()
Pre-serialize instance.
- Returns:
- serializable_repdict
A serializable representation of an instance.
- update(new_core_attr_subset_candidate, skip_validation_and_conversion=False)
Update a subset of the core attributes.
- Parameters:
- new_core_attr_subset_candidatedict, optional
A dict object.
- skip_validation_and_conversionbool, optional
Let
validation_and_conversion_funcs
andcore_attrs
denote the attributesvalidation_and_conversion_funcs
andcore_attrs
respectively, both of which being dict objects.If
skip_validation_and_conversion
is set toFalse
, then for each keykey
incore_attrs
that is also innew_core_attr_subset_candidate
,core_attrs[key]
is set tovalidation_and_conversion_funcs[key] (new_core_attr_subset_candidate)
.Otherwise, if
skip_validation_and_conversion
is set toTrue
, then for each keykey
incore_attrs
that is also innew_core_attr_subset_candidate
,core_attrs[key]
is set tonew_core_attr_subset_candidate[key]
. This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofnew_core_attr_subset_candidate
, as it is guaranteed that no copies or conversions are made in this case.
- property validation_and_conversion_funcs
dict: The validation and conversion functions.
The keys of
validation_and_conversion_funcs
are the names of the constructor parameters, excludingskip_validation_and_conversion
if it exists as a construction parameter.Let
core_attrs
denote the attributecore_attrs
, which is also a dict object.For each dict key
key
incore_attrs
,validation_and_conversion_funcs[key](core_attrs)
is expected to not raise an exception.Note that
validation_and_conversion_funcs
should be considered read-only.