2.12.3.1. prismatique.worker.gpu.Params

class Params(num_gpus=4, batch_size=1, data_transfer_mode='auto', num_streams_per_gpu=3, skip_validation_and_conversion=False)[source]

Bases: PreSerializableAndUpdatable

The simulation parameters related to GPU workers.

Parameters:
num_gpusint, optional

Let num_available_gpus be the number of GPU devices available for the simulation. max(num_available_gpus, num_gpus) determines the number of GPUs that are to be used in the simulation. See the documentation for the class prismatique.worker.Params for a discussion on how the number of GPU devices affects performance.

batch_sizeint, optional

The calculation of the transmission of a single probe or plane wave through the entire sample (i.e. from the incident surface to the exit surface) involves a series of fast-Fourier transform (FFT) operations. FFTs are calculated using a divide-and-conquer algorithm that recursively breaks down a discrete Fourier transform (DFT) into smaller DFTs and performs multiplications involving complex roots of unity called twiddle factors. Thus, a given FFT in this scheme is calculated in multiple steps. The libraries used in prismatic that implement FFTs support batch FFTs, whereby multiple Fourier transforms of the same size can be computed simultaneously. By simultaneously, we mean that step \(i+1\) of a given FFT in a given batch cannot be executed until step \(i\) has been executed for all FFTs in said batch. This order of operations allows for reuse of intermediate twiddle factors, resulting in a faster overall computation than performing individual transforms one-by-one at the expense of requiring a larger block of memory to store the multiple arrays. We can therefore use this batch FFT method to calculate the transmission of a batch of probes or plane waves simultaneously in the same sense as that articulated above.

If num_gpus has been set to a positive integer`, then batch_size specifies the number of probes or plane waves to transmit simultaneously per GPU device. If num_gpus has been set to 0, then the parameter batch_size is ignored upon configuring the simulation.

data_transfer_mode"single-transfer" | "streaming" | "auto", optional

The preferred way to perform simulations is to transfer large data structures such as the projected potential array or the compact scattering matrices to each GPU only once, where they can then be read from repeatedly over the course of the calculation. However, this requires that the arrays fit into the limited GPU memory. For simulations that are too large, prismatic has implemented an asynchronous streaming version for simulations. A stream is a sequence of operations which are processed in order; however, different streams can execute out of order with respect to one another. These operations include kernel executions and memory transfers. Each GPU device can manage multiple streams, where each stream may use some subset of the threads in said GPU device. Since only one kernel is able to run on a given GPU device at any one time, a queue of streams can be formed such that the memory copies of one stream can overlap with the kernel execution of another stream as depicted in Fig. 2.12.3.1.1.

../_images/illustrating_streaming.png

Fig. 2.12.3.1.1 Depiction of streaming execution. Figure taken from Ref. [Hinitt1].

In streaming mode, rather than allocate and transfer a single read-only copy of large arrays, buffers are allocated to each stream large enough to hold only the relevant subset of the data for the current step in the calculation, and the job itself triggers asynchronous streaming of the data it requires for the next step. The use of asynchronous memory copies and CUDA streams permits the partial hiding of memory transfer latencies behind kernel execution.

By default, data_transfer_mode is set to "auto", which signals prismatic to use an automatic procedure to determine whether to use the single-transfer or streaming mode, whereby the input parameters are used to estimate how much memory will be consumed on the device, and if this estimate is too large compared with the available device memory then the streaming mode is used. Users can manually select streaming mode by setting data_transfer_mode to "streaming", or if memory permits so, users can also manually select single-transfer mode by setting data_transfer_mode to "single-transfer". If num_gpus has been set to 0, then the parameter data_transfer_mode is ignored upon configuring the simulation.

num_streams_per_gpuint, optional

If num_gpus has been set to a positive integer` and streaming mode has been enabled, then num_streams_per_gpu specifies the number of CUDA streams per GPU device. If num_gpus has been set to 0 or streaming mode has not been enabled, then the parameter num_streams_per_gpu is ignored upon configuring the simulation.

skip_validation_and_conversionbool, optional

Let validation_and_conversion_funcs and core_attrs denote the attributes validation_and_conversion_funcs and core_attrs respectively, both of which being dict objects.

Let params_to_be_mapped_to_core_attrs denote the dict representation of the constructor parameters excluding the parameter skip_validation_and_conversion, where each dict key key is a different constructor parameter name, excluding the name "skip_validation_and_conversion", and params_to_be_mapped_to_core_attrs[key] would yield the value of the constructor parameter with the name given by key.

If skip_validation_and_conversion is set to False, then for each key key in params_to_be_mapped_to_core_attrs, core_attrs[key] is set to validation_and_conversion_funcs[key] (params_to_be_mapped_to_core_attrs).

Otherwise, if skip_validation_and_conversion is set to True, then core_attrs is set to params_to_be_mapped_to_core_attrs.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values of params_to_be_mapped_to_core_attrs, as it is guaranteed that no copies or conversions are made in this case.

Attributes:
core_attrs

dict: The “core attributes”.

de_pre_serialization_funcs

dict: The de-pre-serialization functions.

pre_serialization_funcs

dict: The pre-serialization functions.

validation_and_conversion_funcs

dict: The validation and conversion functions.

Methods

de_pre_serialize([serializable_rep, ...])

Construct an instance from a serializable representation.

dump([filename, overwrite])

Serialize instance and save the result in a JSON file.

dumps()

Serialize instance.

get_core_attrs([deep_copy])

Return the core attributes.

get_de_pre_serialization_funcs()

Return the de-pre-serialization functions.

get_pre_serialization_funcs()

Return the pre-serialization functions.

get_validation_and_conversion_funcs()

Return the validation and conversion functions.

load([filename, skip_validation_and_conversion])

Construct an instance from a serialized representation that is stored in a JSON file.

loads([serialized_rep, ...])

Construct an instance from a serialized representation.

pre_serialize()

Pre-serialize instance.

update([new_core_attr_subset_candidate, ...])

Update a subset of the core attributes.

Methods

de_pre_serialize

Construct an instance from a serializable representation.

dump

Serialize instance and save the result in a JSON file.

dumps

Serialize instance.

get_core_attrs

Return the core attributes.

get_de_pre_serialization_funcs

Return the de-pre-serialization functions.

get_pre_serialization_funcs

Return the pre-serialization functions.

get_validation_and_conversion_funcs

Return the validation and conversion functions.

load

Construct an instance from a serialized representation that is stored in a JSON file.

loads

Construct an instance from a serialized representation.

pre_serialize

Pre-serialize instance.

update

Update a subset of the core attributes.

Attributes

core_attrs

dict: The "core attributes".

de_pre_serialization_funcs

dict: The de-pre-serialization functions.

pre_serialization_funcs

dict: The pre-serialization functions.

validation_and_conversion_funcs

dict: The validation and conversion functions.

property core_attrs

dict: The “core attributes”.

The keys of core_attrs are the same as the attribute validation_and_conversion_funcs, which is also a dict object.

Note that core_attrs should be considered read-only.

property de_pre_serialization_funcs

dict: The de-pre-serialization functions.

de_pre_serialization_funcs has the same keys as the attribute validation_and_conversion_funcs, which is also a dict object.

Let validation_and_conversion_funcs and pre_serialization_funcs denote the attributes validation_and_conversion_funcs pre_serialization_funcs respectively, the last of which being a dict object as well.

Let core_attrs_candidate_1 be any dict object that has the same keys as validation_and_conversion_funcs, where for each dict key key in core_attrs_candidate_1, validation_and_conversion_funcs[key](core_attrs_candidate_1) does not raise an exception.

Let serializable_rep be a dict object that has the same keys as core_attrs_candidate_1, where for each dict key key in core_attrs_candidate_1, serializable_rep[key] is set to pre_serialization_funcs[key](core_attrs_candidate_1[key]).

The items of de_pre_serialization_funcs are expected to be set to callable objects that would lead to de_pre_serialization_funcs[key](serializable_rep[key]) not raising an exception for each dict key key in serializable_rep.

Let core_attrs_candidate_2 be a dict object that has the same keys as serializable_rep, where for each dict key key in validation_and_conversion_funcs, core_attrs_candidate_2[key] is set to de_pre_serialization_funcs[key](serializable_rep[key]).

The items of de_pre_serialization_funcs are also expected to be set to callable objects that would lead to validation_and_conversion_funcs[key](core_attrs_candidate_2) not raising an exception for each dict key key in core_attrs_candidate_2.

Note that de_pre_serialization_funcs should be considered read-only.

classmethod de_pre_serialize(serializable_rep={}, skip_validation_and_conversion=False)

Construct an instance from a serializable representation.

Parameters:
serializable_repdict, optional

A dict object that has the same keys as the attribute validation_and_conversion_funcs, which is also a dict object.

Let validation_and_conversion_funcs and de_pre_serialization_funcs denote the attributes validation_and_conversion_funcs de_pre_serialization_funcs respectively, the last of which being a dict object as well.

The items of serializable_rep are expected to be objects that would lead to de_pre_serialization_funcs[key](serializable_rep[key]) not raising an exception for each dict key key in serializable_rep.

Let core_attrs_candidate be a dict object that has the same keys as serializable_rep, where for each dict key key in serializable_rep, core_attrs_candidate[key] is set to de_pre_serialization_funcs[key](serializable_rep[key])``.

The items of serializable_rep are also expected to be set to objects that would lead to validation_and_conversion_funcs[key](core_attrs_candidate) not raising an exception for each dict key key in serializable_rep.

skip_validation_and_conversionbool, optional

Let core_attrs denote the attribute core_attrs, which is a dict object.

If skip_validation_and_conversion is set to False, then for each key key in serializable_rep, core_attrs[key] is set to validation_and_conversion_funcs[key] (core_attrs_candidate), with validation_and_conversion_funcs and core_attrs_candidate_1 being introduced in the above description of serializable_rep.

Otherwise, if skip_validation_and_conversion is set to True, then core_attrs is set to core_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values of core_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.

Returns:
instance_of_current_clsCurrent class

An instance constructed from the serializable representation serializable_rep.

dump(filename='serialized_rep_of_fancytype.json', overwrite=False)

Serialize instance and save the result in a JSON file.

Parameters:
filenamestr, optional

The relative or absolute path to the JSON file in which to store the serialized representation of an instance.

overwritebool, optional

If overwrite is set to False and a file exists at the path filename, then the serialized instance is not written to that file and an exception is raised. Otherwise, the serialized instance will be written to that file barring no other issues occur.

Returns:
dumps()

Serialize instance.

Returns:
serialized_repdict

A serialized representation of an instance.

get_core_attrs(deep_copy=True)

Return the core attributes.

Parameters:
deep_copybool, optional

Let core_attrs denote the attribute core_attrs, which is a dict object.

If deep_copy is set to True, then a deep copy of core_attrs is returned. Otherwise, a shallow copy of core_attrs is returned.

Returns:
core_attrsdict

The attribute core_attrs.

classmethod get_de_pre_serialization_funcs()[source]

Return the de-pre-serialization functions.

Returns:
de_pre_serialization_funcsdict

The attribute de_pre_serialization_funcs.

classmethod get_pre_serialization_funcs()[source]

Return the pre-serialization functions.

Returns:
pre_serialization_funcsdict

The attribute pre_serialization_funcs.

classmethod get_validation_and_conversion_funcs()[source]

Return the validation and conversion functions.

Returns:
validation_and_conversion_funcsdict

The attribute validation_and_conversion_funcs.

classmethod load(filename='serialized_rep_of_fancytype.json', skip_validation_and_conversion=False)

Construct an instance from a serialized representation that is stored in a JSON file.

Users can save serialized representations to JSON files using the method fancytypes.PreSerializable.dump().

Parameters:
filenamestr, optional

The relative or absolute path to the JSON file that is storing the serialized representation of an instance.

filename is expected to be such that json.load(open(filename, "r")) does not raise an exception.

Let serializable_rep=json.load(open(filename, "r")).

Let validation_and_conversion_funcs and de_pre_serialization_funcs denote the attributes validation_and_conversion_funcs de_pre_serialization_funcs respectively, both of which being dict objects as well.

filename is also expected to be such that de_pre_serialization_funcs[key](serializable_rep[key]) does not raise an exception for each dict key key in de_pre_serialization_funcs.

Let core_attrs_candidate be a dict object that has the same keys as de_pre_serialization_funcs, where for each dict key key in serializable_rep, core_attrs_candidate[key] is set to de_pre_serialization_funcs[key](serializable_rep[key])``.

filename is also expected to be such that validation_and_conversion_funcs[key](core_attrs_candidate) does not raise an exception for each dict key key in serializable_rep.

skip_validation_and_conversionbool, optional

Let core_attrs denote the attribute core_attrs, which is a dict object.

Let core_attrs_candidate be as defined in the above description of filename.

If skip_validation_and_conversion is set to False, then for each key key in core_attrs_candidate, core_attrs[key] is set to validation_and_conversion_funcs[key] (core_attrs_candidate), , with validation_and_conversion_funcs and core_attrs_candidate being introduced in the above description of filename.

Otherwise, if skip_validation_and_conversion is set to True, then core_attrs is set to core_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values of core_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.

Returns:
instance_of_current_clsCurrent class

An instance constructed from the serialized representation stored in the JSON file.

classmethod loads(serialized_rep='{}', skip_validation_and_conversion=False)

Construct an instance from a serialized representation.

Users can generate serialized representations using the method dumps().

Parameters:
serialized_repstr | bytes | bytearray, optional

The serialized representation.

serialized_rep is expected to be such that json.loads(serialized_rep) does not raise an exception.

Let serializable_rep=json.loads(serialized_rep).

Let validation_and_conversion_funcs and de_pre_serialization_funcs denote the attributes validation_and_conversion_funcs de_pre_serialization_funcs respectively, both of which being dict objects as well.

serialized_rep is also expected to be such that de_pre_serialization_funcs[key](serializable_rep[key]) does not raise an exception for each dict key key in de_pre_serialization_funcs.

Let core_attrs_candidate be a dict object that has the same keys as serializable_rep, where for each dict key key in de_pre_serialization_funcs, core_attrs_candidate[key] is set to de_pre_serialization_funcs[key](serializable_rep[key])``.

serialized_rep is also expected to be such that validation_and_conversion_funcs[key](core_attrs_candidate) does not raise an exception for each dict key key in serializable_rep.

skip_validation_and_conversionbool, optional

Let core_attrs denote the attribute core_attrs, which is a dict object.

If skip_validation_and_conversion is set to False, then for each key key in core_attrs_candidate, core_attrs[key] is set to validation_and_conversion_funcs[key] (core_attrs_candidate), with validation_and_conversion_funcs and core_attrs_candidate_1 being introduced in the above description of serialized_rep.

Otherwise, if skip_validation_and_conversion is set to True, then core_attrs is set to core_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values of core_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.

Returns:
instance_of_current_clsCurrent class

An instance constructed from the serialized representation.

property pre_serialization_funcs

dict: The pre-serialization functions.

pre_serialization_funcs has the same keys as the attribute validation_and_conversion_funcs, which is also a dict object.

Let validation_and_conversion_funcs and core_attrs denote the attributes validation_and_conversion_funcs and core_attrs respectively, the last of which being a dict object as well.

For each dict key key in core_attrs, pre_serialization_funcs[key](core_attrs[key]) is expected to yield a serializable object, i.e. it should yield an object that can be passed into the function json.dumps without raising an exception.

Note that pre_serialization_funcs should be considered read-only.

pre_serialize()

Pre-serialize instance.

Returns:
serializable_repdict

A serializable representation of an instance.

update(new_core_attr_subset_candidate={}, skip_validation_and_conversion=False)

Update a subset of the core attributes.

Parameters:
new_core_attr_subset_candidatedict, optional

A dict object.

skip_validation_and_conversionbool, optional

Let validation_and_conversion_funcs and core_attrs denote the attributes validation_and_conversion_funcs and core_attrs respectively, both of which being dict objects.

If skip_validation_and_conversion is set to False, then for each key key in core_attrs that is also in new_core_attr_subset_candidate, core_attrs[key] is set to validation_and_conversion_funcs[key] (new_core_attr_subset_candidate).

Otherwise, if skip_validation_and_conversion is set to True, then for each key key in core_attrs that is also in new_core_attr_subset_candidate, core_attrs[key] is set to new_core_attr_subset_candidate[key]. This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values of new_core_attr_subset_candidate, as it is guaranteed that no copies or conversions are made in this case.

property validation_and_conversion_funcs

dict: The validation and conversion functions.

The keys of validation_and_conversion_funcs are the names of the constructor parameters, excluding skip_validation_and_conversion if it exists as a construction parameter.

Let core_attrs denote the attribute core_attrs, which is also a dict object.

For each dict key key in core_attrs, validation_and_conversion_funcs[key](core_attrs) is expected to not raise an exception.

Note that validation_and_conversion_funcs should be considered read-only.