2.2.2. prismatique.cbed.Params
- class Params(postprocessing_seq=(), avg_num_electrons_per_postprocessed_dp=1, apply_shot_noise=False, save_wavefunctions=False, save_final_intensity=False, skip_validation_and_conversion=False)[source]
Bases:
PreSerializableAndUpdatableThe simulation parameters related to convergent beam electron diffraction patterns.
In performing STEM, a probe is scanned across a plane (i.e. 2D geometry) where for each probe position a 2D convergent beam electron diffraction (CBED) pattern is collected. The coordinates \(\left(\varphi_x, \varphi_y\right)\) in the diffraction plane specify the scattering angle, which is related to the beam electron’s transverse momentum \(\left(k_x, k_y\right)\) by
(2.2.2.1)\[\left(\varphi_x, \varphi_y\right) = \lambda \left(k_x, k_y\right)\]where \(\lambda\) is the beam electron’s wavelength. This set of CBED patterns is what is sometimes referred to as the 4D-STEM data/output, the “4D” referring to the two spatial dimensions associated with each probe position and the two angular dimensions associated with each CBED pattern. Experimentally CBED intensity patterns are collected.
As discussed in the documentation for the class
prismatique.thermal.Params, the intensity pattern for a given probe collected by the STEM detector measures the diagonal elements of the state operator \(\hat{\rho}_{t}\) of a transmitted beam electron, in the electron’s transverse momentum basis. See Eq. (2.9.1.1) for a mathematical expression of the above. We model \(\hat{\rho}_{t}\) by Eq. (2.9.1.3), wherein \(\hat{\rho}_{t}\) is expressed as mixed state. Specifically, it is expressed as an incoherent average of pure (i.e. coherent) states \(\left|\psi_{t}\left(\delta_{f};\mathbf{u}_{1},\ldots,\mathbf{u}_{N}; \boldsymbol{\delta}_{\beta}\right)\right\rangle\) over a range of defocii, and a set of frozen phonon configurations. See the documentation for the classprimsatique.thermal.Paramsfor further discussion on \(\hat{\rho}_{t}\). To approximate the average,prismaticcalculates the \(\left|\psi_{t}\left(\delta_{f};\mathbf{u}_{1},\ldots,\mathbf{u}_{N}; \boldsymbol{\delta}_{\beta}\right)\right\rangle\) for a discrete set of defocii and randomly sampled frozen phonon configurations.Prior to any postprocessing, the pixel size of the CBED patterns and the dimensions of the CBED patterns in units of said pixels are given by Eq. (2.8.29) and (2.8.30) respectively. See the documentation for the subpackage
prismatique.stemfor relevant context to the above equations.- Parameters:
- postprocessing_seqarray_like (
empix.OptionalCroppingParams|empix.OptionalDownsamplingParams|empix.OptionalResamplingParams, ndim=1), optional Each item in
postprocessing_seqspecifies a postprocessing step to be applied to each CBED intensity pattern . Each item must be an instance of one of the following classes:empix.OptionalCroppingParams;empix.OptionalDownsamplingParams;empix.OptionalResamplingParams. If for example the \(i^{\text{th}}\) item is an instance of the classempix.OptionalCroppingParams, then said item specifies that at the \(i^{\text{th}}\) postprocessing step, the output from the previous step is converted to ahyperspysignal, and passed as the first parameter to the functionempix.crop(), with the item being passed as the second parameter, i.e. the optional parameters to the function. If the item is an instance of the classempix.OptionalDownsamplingParams, then the function used isempix.downsample(). If the item is an instance of the classempix.OptionalResamplingParams, then the function used isempix.resample(). Of course, forpostprocessing_seq[0], the unprocessed CBED intensity pattern set generated by the simulation is used as the first parameter to the implied postprocessing function, after being converted to ahyperspysignal. The convention used in prismatique is that, when converted to ahyperspysignal, the CBED pattern is visualized with the \(k_x\)-axis being the horizontal axis, increasing from left to right, and the \(k_y\)-axis being the vertical axis, increasing from bottom to top, both expressed in units of \(1/Å\).Blank [i.e. zeroed] unprocessed CBED patterns can be generated as
hyperspysignals using the functionprismatique.cbed.blank_unprocessed_pattern_signal(). This function may help users determine what postprocessing sequence they require to obtain postprocessed CBED intensity patterns with the desired pixel sizes, number of pixels, etc.Note that the parameter
postprocessing_seq[idx].core_attrs["title"]is effectively ignored for all integersidxsatisfying0<=idx<len(postprocessing_seq). Moreover, ifpostprocessing_seq[idx]is an instance of the classempix.OptionalDownsamplingParams, then said object must satisfypostprocessing_seq[idx].core_attrs["downsample_mode"]=="mean, otherwise an exception will be raised.- avg_num_electrons_per_postprocessed_dpfloat, optional
The average number of electrons per postprocessed CBED intensity pattern.
- apply_shot_noisebool, optional
If
apply_shot_noiseis set toTrueandsaveis set to"intensity", then simulated shot noise is applied to each CBED intensity pattern as a final postprocessing step, i.e. after all the postprocessing steps, specified bypostprocessing_seq, have been applied. Otherwise, no simulated shot noise is applied.Shot noise is simulated as follows: for each pixel in each CBED intensity pattern, the numerical value stored therein is used as the variance of a Poisson distribution, from which to sample a new value of said pixel.
- save_wavefunctionsbool, optional
If
save_wavefunctionsis set toTrue, then the unprocessed \(\left|\psi_{t}\left(\delta_{f};\mathbf{u}_{1}, \ldots,\mathbf{u}_{N}; \boldsymbol{\delta}_{\beta}\right)\right\rangle\), represented in the electron’s transverse momentum basis, are saved, where the wavefunction data corresponding to theith frozen phonon configuration subset is saved to a file with the basename"stem_sim_wavefunction_output_of_subset_"+str(i)+".h5". Otherwise, no wavefunction data is saved.- save_final_intensitybool, optional
If
save_final_intensityis set toTrue, then the postprocessed CBED intensity patterns, obtained by performing the incoherent average described further above, are saved to a file with basename"stem_sim_intensity_output.h5". Otherwise, it is not saved.- skip_validation_and_conversionbool, optional
Let
validation_and_conversion_funcsandcore_attrsdenote the attributesvalidation_and_conversion_funcsandcore_attrsrespectively, both of which being dict objects.Let
params_to_be_mapped_to_core_attrsdenote the dict representation of the constructor parameters excluding the parameterskip_validation_and_conversion, where each dict keykeyis a different constructor parameter name, excluding the name"skip_validation_and_conversion", andparams_to_be_mapped_to_core_attrs[key]would yield the value of the constructor parameter with the name given bykey.If
skip_validation_and_conversionis set toFalse, then for each keykeyinparams_to_be_mapped_to_core_attrs,core_attrs[key]is set tovalidation_and_conversion_funcs[key] (params_to_be_mapped_to_core_attrs).Otherwise, if
skip_validation_and_conversionis set toTrue, thencore_attrsis set toparams_to_be_mapped_to_core_attrs.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofparams_to_be_mapped_to_core_attrs, as it is guaranteed that no copies or conversions are made in this case.
- postprocessing_seqarray_like (
- Attributes:
core_attrsdict: The “core attributes”.
de_pre_serialization_funcsdict: The de-pre-serialization functions.
pre_serialization_funcsdict: The pre-serialization functions.
validation_and_conversion_funcsdict: The validation and conversion functions.
Methods
de_pre_serialize([serializable_rep, ...])Construct an instance from a serializable representation.
dump([filename, overwrite])Serialize instance and save the result in a JSON file.
dumps()Serialize instance.
get_core_attrs([deep_copy])Return the core attributes.
Return the de-pre-serialization functions.
Return the pre-serialization functions.
Return the validation and conversion functions.
load([filename, skip_validation_and_conversion])Construct an instance from a serialized representation that is stored in a JSON file.
loads([serialized_rep, ...])Construct an instance from a serialized representation.
Pre-serialize instance.
update([new_core_attr_subset_candidate, ...])Update a subset of the core attributes.
Methods
Construct an instance from a serializable representation.
Serialize instance and save the result in a JSON file.
Serialize instance.
Return the core attributes.
Return the de-pre-serialization functions.
Return the pre-serialization functions.
Return the validation and conversion functions.
Construct an instance from a serialized representation that is stored in a JSON file.
Construct an instance from a serialized representation.
Pre-serialize instance.
Update a subset of the core attributes.
Attributes
dict: The "core attributes".
dict: The de-pre-serialization functions.
dict: The pre-serialization functions.
dict: The validation and conversion functions.
- property core_attrs
dict: The “core attributes”.
The keys of
core_attrsare the same as the attributevalidation_and_conversion_funcs, which is also a dict object.Note that
core_attrsshould be considered read-only.
- property de_pre_serialization_funcs
dict: The de-pre-serialization functions.
de_pre_serialization_funcshas the same keys as the attributevalidation_and_conversion_funcs, which is also a dict object.Let
validation_and_conversion_funcsandpre_serialization_funcsdenote the attributesvalidation_and_conversion_funcspre_serialization_funcsrespectively, the last of which being a dict object as well.Let
core_attrs_candidate_1be any dict object that has the same keys asvalidation_and_conversion_funcs, where for each dict keykeyincore_attrs_candidate_1,validation_and_conversion_funcs[key](core_attrs_candidate_1)does not raise an exception.Let
serializable_repbe a dict object that has the same keys ascore_attrs_candidate_1, where for each dict keykeyincore_attrs_candidate_1,serializable_rep[key]is set topre_serialization_funcs[key](core_attrs_candidate_1[key]).The items of
de_pre_serialization_funcsare expected to be set to callable objects that would lead tode_pre_serialization_funcs[key](serializable_rep[key])not raising an exception for each dict keykeyinserializable_rep.Let
core_attrs_candidate_2be a dict object that has the same keys asserializable_rep, where for each dict keykeyinvalidation_and_conversion_funcs,core_attrs_candidate_2[key]is set tode_pre_serialization_funcs[key](serializable_rep[key]).The items of
de_pre_serialization_funcsare also expected to be set to callable objects that would lead tovalidation_and_conversion_funcs[key](core_attrs_candidate_2)not raising an exception for each dict keykeyincore_attrs_candidate_2.Note that
de_pre_serialization_funcsshould be considered read-only.
- classmethod de_pre_serialize(serializable_rep={}, skip_validation_and_conversion=False)
Construct an instance from a serializable representation.
- Parameters:
- serializable_repdict, optional
A dict object that has the same keys as the attribute
validation_and_conversion_funcs, which is also a dict object.Let
validation_and_conversion_funcsandde_pre_serialization_funcsdenote the attributesvalidation_and_conversion_funcsde_pre_serialization_funcsrespectively, the last of which being a dict object as well.The items of
serializable_repare expected to be objects that would lead tode_pre_serialization_funcs[key](serializable_rep[key])not raising an exception for each dict keykeyinserializable_rep.Let
core_attrs_candidatebe a dict object that has the same keys asserializable_rep, where for each dict keykeyinserializable_rep,core_attrs_candidate[key]is set to de_pre_serialization_funcs[key](serializable_rep[key])``.The items of
serializable_repare also expected to be set to objects that would lead tovalidation_and_conversion_funcs[key](core_attrs_candidate)not raising an exception for each dict keykeyinserializable_rep.- skip_validation_and_conversionbool, optional
Let
core_attrsdenote the attributecore_attrs, which is a dict object.If
skip_validation_and_conversionis set toFalse, then for each keykeyinserializable_rep,core_attrs[key]is set tovalidation_and_conversion_funcs[key] (core_attrs_candidate), withvalidation_and_conversion_funcsandcore_attrs_candidate_1being introduced in the above description ofserializable_rep.Otherwise, if
skip_validation_and_conversionis set toTrue, thencore_attrsis set tocore_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofcore_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.
- Returns:
- instance_of_current_clsCurrent class
An instance constructed from the serializable representation
serializable_rep.
- dump(filename='serialized_rep_of_fancytype.json', overwrite=False)
Serialize instance and save the result in a JSON file.
- Parameters:
- filenamestr, optional
The relative or absolute path to the JSON file in which to store the serialized representation of an instance.
- overwritebool, optional
If
overwriteis set toFalseand a file exists at the pathfilename, then the serialized instance is not written to that file and an exception is raised. Otherwise, the serialized instance will be written to that file barring no other issues occur.
- Returns:
- dumps()
Serialize instance.
- Returns:
- serialized_repdict
A serialized representation of an instance.
- get_core_attrs(deep_copy=True)
Return the core attributes.
- Parameters:
- deep_copybool, optional
Let
core_attrsdenote the attributecore_attrs, which is a dict object.If
deep_copyis set toTrue, then a deep copy ofcore_attrsis returned. Otherwise, a shallow copy ofcore_attrsis returned.
- Returns:
- core_attrsdict
The attribute
core_attrs.
- classmethod get_de_pre_serialization_funcs()[source]
Return the de-pre-serialization functions.
- Returns:
- de_pre_serialization_funcsdict
The attribute
de_pre_serialization_funcs.
- classmethod get_pre_serialization_funcs()[source]
Return the pre-serialization functions.
- Returns:
- pre_serialization_funcsdict
The attribute
pre_serialization_funcs.
- classmethod get_validation_and_conversion_funcs()[source]
Return the validation and conversion functions.
- Returns:
- validation_and_conversion_funcsdict
The attribute
validation_and_conversion_funcs.
- classmethod load(filename='serialized_rep_of_fancytype.json', skip_validation_and_conversion=False)
Construct an instance from a serialized representation that is stored in a JSON file.
Users can save serialized representations to JSON files using the method
fancytypes.PreSerializable.dump().- Parameters:
- filenamestr, optional
The relative or absolute path to the JSON file that is storing the serialized representation of an instance.
filenameis expected to be such thatjson.load(open(filename, "r"))does not raise an exception.Let
serializable_rep=json.load(open(filename, "r")).Let
validation_and_conversion_funcsandde_pre_serialization_funcsdenote the attributesvalidation_and_conversion_funcsde_pre_serialization_funcsrespectively, both of which being dict objects as well.filenameis also expected to be such thatde_pre_serialization_funcs[key](serializable_rep[key])does not raise an exception for each dict keykeyinde_pre_serialization_funcs.Let
core_attrs_candidatebe a dict object that has the same keys asde_pre_serialization_funcs, where for each dict keykeyinserializable_rep,core_attrs_candidate[key]is set to de_pre_serialization_funcs[key](serializable_rep[key])``.filenameis also expected to be such thatvalidation_and_conversion_funcs[key](core_attrs_candidate)does not raise an exception for each dict keykeyinserializable_rep.- skip_validation_and_conversionbool, optional
Let
core_attrsdenote the attributecore_attrs, which is a dict object.Let
core_attrs_candidatebe as defined in the above description offilename.If
skip_validation_and_conversionis set toFalse, then for each keykeyincore_attrs_candidate,core_attrs[key]is set tovalidation_and_conversion_funcs[key] (core_attrs_candidate), , withvalidation_and_conversion_funcsandcore_attrs_candidatebeing introduced in the above description offilename.Otherwise, if
skip_validation_and_conversionis set toTrue, thencore_attrsis set tocore_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofcore_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.
- Returns:
- instance_of_current_clsCurrent class
An instance constructed from the serialized representation stored in the JSON file.
- classmethod loads(serialized_rep='{}', skip_validation_and_conversion=False)
Construct an instance from a serialized representation.
Users can generate serialized representations using the method
dumps().- Parameters:
- serialized_repstr | bytes | bytearray, optional
The serialized representation.
serialized_repis expected to be such thatjson.loads(serialized_rep)does not raise an exception.Let
serializable_rep=json.loads(serialized_rep).Let
validation_and_conversion_funcsandde_pre_serialization_funcsdenote the attributesvalidation_and_conversion_funcsde_pre_serialization_funcsrespectively, both of which being dict objects as well.serialized_repis also expected to be such thatde_pre_serialization_funcs[key](serializable_rep[key])does not raise an exception for each dict keykeyinde_pre_serialization_funcs.Let
core_attrs_candidatebe a dict object that has the same keys asserializable_rep, where for each dict keykeyinde_pre_serialization_funcs,core_attrs_candidate[key]is set to de_pre_serialization_funcs[key](serializable_rep[key])``.serialized_repis also expected to be such thatvalidation_and_conversion_funcs[key](core_attrs_candidate)does not raise an exception for each dict keykeyinserializable_rep.- skip_validation_and_conversionbool, optional
Let
core_attrsdenote the attributecore_attrs, which is a dict object.If
skip_validation_and_conversionis set toFalse, then for each keykeyincore_attrs_candidate,core_attrs[key]is set tovalidation_and_conversion_funcs[key] (core_attrs_candidate), withvalidation_and_conversion_funcsandcore_attrs_candidate_1being introduced in the above description ofserialized_rep.Otherwise, if
skip_validation_and_conversionis set toTrue, thencore_attrsis set tocore_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofcore_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.
- Returns:
- instance_of_current_clsCurrent class
An instance constructed from the serialized representation.
- property pre_serialization_funcs
dict: The pre-serialization functions.
pre_serialization_funcshas the same keys as the attributevalidation_and_conversion_funcs, which is also a dict object.Let
validation_and_conversion_funcsandcore_attrsdenote the attributesvalidation_and_conversion_funcsandcore_attrsrespectively, the last of which being a dict object as well.For each dict key
keyincore_attrs,pre_serialization_funcs[key](core_attrs[key])is expected to yield a serializable object, i.e. it should yield an object that can be passed into the functionjson.dumpswithout raising an exception.Note that
pre_serialization_funcsshould be considered read-only.
- pre_serialize()
Pre-serialize instance.
- Returns:
- serializable_repdict
A serializable representation of an instance.
- update(new_core_attr_subset_candidate={}, skip_validation_and_conversion=False)
Update a subset of the core attributes.
- Parameters:
- new_core_attr_subset_candidatedict, optional
A dict object.
- skip_validation_and_conversionbool, optional
Let
validation_and_conversion_funcsandcore_attrsdenote the attributesvalidation_and_conversion_funcsandcore_attrsrespectively, both of which being dict objects.If
skip_validation_and_conversionis set toFalse, then for each keykeyincore_attrsthat is also innew_core_attr_subset_candidate,core_attrs[key]is set tovalidation_and_conversion_funcs[key] (new_core_attr_subset_candidate).Otherwise, if
skip_validation_and_conversionis set toTrue, then for each keykeyincore_attrsthat is also innew_core_attr_subset_candidate,core_attrs[key]is set tonew_core_attr_subset_candidate[key]. This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values ofnew_core_attr_subset_candidate, as it is guaranteed that no copies or conversions are made in this case.
- property validation_and_conversion_funcs
dict: The validation and conversion functions.
The keys of
validation_and_conversion_funcsare the names of the constructor parameters, excludingskip_validation_and_conversionif it exists as a construction parameter.Let
core_attrsdenote the attributecore_attrs, which is also a dict object.For each dict key
keyincore_attrs,validation_and_conversion_funcs[key](core_attrs)is expected to not raise an exception.Note that
validation_and_conversion_funcsshould be considered read-only.