2.14. empix.OptionalCroppingParams

class OptionalCroppingParams(center=None, window_dims=None, pad_mode='no-padding', apply_symmetric_mask=False, title=None, skip_validation_and_conversion=False)[source]

Bases: PreSerializableAndUpdatable

The set of optional parameters for the function empix.crop().

The Python function empix.crop() applies a series of optional transformations to a given input 2D hyperspy signal. Let us denote the input 2D hyperspy signal by \(F_{\mathbf{m}; l_x, l_y}\), where \(l_x\) and \(l_y\) are integers indexing the sampled horizontal and vertical coordinates respectively in the signal space of the input signal, and \(\mathbf{m}\) is a vector of integers representing the navigation indices of the input signal. The Python function effectively does the following:

1. Copies the input signal and optionally pads the copy along the horizontal and vertical axes in signal space according to the parameter pad_mode;

2. Constructs a cropping window in the signal space of the (optionally padded) copy of the input signal, with the cropping window dimensions being determined by the parameter window_dims;

3. Shifts the center of the cropping window to coordinates determined by the parameter center;

4. Shifts the center of the cropping window again to the coordinates of the pixel closest to the aforementioned coordinates in the previous step;

5. Crops the (optionally padded) copy of the input signal along the horizontal and vertical dimensions of the signal space according to the placement of the cropping window in the previous two steps;

6. Optionally applies a symmetric mask to the cropped signal resulting from the previous step according to the parameter apply_symmetric_mask.

See the description below of the optional parameters for more details.

Parameters:
centerarray_like (float, shape=(2,)) | None, optional

If center is set to None, then the center of the cropping window is set to the signal space coordinates corresponding to the pixel that is (h_dim+1)//2 -1 pixels to the right of the upper left corner in signal space, and (v_dim+1)//2-1 pixels below the same corner, where h_dim and v_dim are the horizontal and vertical dimensions of the signal space. Otherwise, if center is set to a pair of floating-point numbers, then center[0] and center[1] specify the horizontal and vertical signal space coordinates of the center of the cropping window prior to the subpixel shift to the nearest pixel, in the same units of the corresponding axes of the input signal.

We define the center of the cropping window to be (N_W_h+1)//2 - 1 pixels to the right of the upper left corner of the cropping window, and (N_W_v+1)//2 - 1 pixels below the same corner, where N_W_h and N_W_v are the horizontal and vertical dimensions of the cropping window in units of pixels.

window_dimsarray_like (int, shape=(2,)) | None, optional

If window_dims is set to None, then the dimensions of the cropping window are set to the dimensions of the signal space of the input signal. Otherwise, if window_dims is set to a pair of positive integers, then window_dims[0] and window_dims[1] specify the horizontal and vertical dimensions of the cropping window in units of pixels.

pad_mode"no-padding" | "wrap" | "zeros", optional

If pad_mode is set to "no-padding", then no padding is performed prior to the crop. If pad_mode is set to "wrap", then the copy of the input signal is effectively padded along the horizontal and vertical axes in signal space by tiling the copy both horizontally and vertically in signal space such that the cropping window lies completely within the signal space boundaries of the resulting padded signal upon performing the crop. If pad_mode is set to "zeros", then the copy of the input signal is effectively padded with zeros such that the cropping window lies completely within the signal space boundaries of the resulting padded signal upon performing the crop.

apply_symmetric_maskbool, optional

If apply_symmetric_mask is set to True and pad_mode to "zeros", then for every signal space pixel in the cropped signal that has a value of zero due to padding and a corresponding pixel with coordinates equal to the former after a rotation of 180 degrees about the center of the cropped signal, the latter i.e. the aforementioned corresponding pixel is effectively set to zero. The effective procedure is equivalent to applying a symmetric mask. Otherwise, no mask is effectively applied after cropping.

titlestr | None, optional

If title is set to None, then the title of the output signal output_signal is set to "Cropped "+ input_signal.metadata.General.title, where input_signal is the input hyperspy signal. Otherwise, if title is a str, then the output_signal.metadata.General.title is set to the value of title.

skip_validation_and_conversionbool, optional

Let validation_and_conversion_funcs and core_attrs denote the attributes validation_and_conversion_funcs and core_attrs respectively, both of which being dict objects.

Let params_to_be_mapped_to_core_attrs denote the dict representation of the constructor parameters excluding the parameter skip_validation_and_conversion, where each dict key key is a different constructor parameter name, excluding the name "skip_validation_and_conversion", and params_to_be_mapped_to_core_attrs[key] would yield the value of the constructor parameter with the name given by key.

If skip_validation_and_conversion is set to False, then for each key key in params_to_be_mapped_to_core_attrs, core_attrs[key] is set to validation_and_conversion_funcs[key] (params_to_be_mapped_to_core_attrs).

Otherwise, if skip_validation_and_conversion is set to True, then core_attrs is set to params_to_be_mapped_to_core_attrs.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values of params_to_be_mapped_to_core_attrs, as it is guaranteed that no copies or conversions are made in this case.

Attributes:
core_attrs

dict: The “core attributes”.

de_pre_serialization_funcs

dict: The de-pre-serialization functions.

pre_serialization_funcs

dict: The pre-serialization functions.

validation_and_conversion_funcs

dict: The validation and conversion functions.

Methods

de_pre_serialize([serializable_rep, ...])

Construct an instance from a serializable representation.

dump([filename, overwrite])

Serialize instance and save the result in a JSON file.

dumps()

Serialize instance.

get_core_attrs([deep_copy])

Return the core attributes.

get_de_pre_serialization_funcs()

Return the de-pre-serialization functions.

get_pre_serialization_funcs()

Return the pre-serialization functions.

get_validation_and_conversion_funcs()

Return the validation and conversion functions.

load([filename, skip_validation_and_conversion])

Construct an instance from a serialized representation that is stored in a JSON file.

loads([serialized_rep, ...])

Construct an instance from a serialized representation.

pre_serialize()

Pre-serialize instance.

update([new_core_attr_subset_candidate, ...])

Update a subset of the core attributes.

Methods

de_pre_serialize

Construct an instance from a serializable representation.

dump

Serialize instance and save the result in a JSON file.

dumps

Serialize instance.

get_core_attrs

Return the core attributes.

get_de_pre_serialization_funcs

Return the de-pre-serialization functions.

get_pre_serialization_funcs

Return the pre-serialization functions.

get_validation_and_conversion_funcs

Return the validation and conversion functions.

load

Construct an instance from a serialized representation that is stored in a JSON file.

loads

Construct an instance from a serialized representation.

pre_serialize

Pre-serialize instance.

update

Update a subset of the core attributes.

Attributes

core_attrs

dict: The "core attributes".

de_pre_serialization_funcs

dict: The de-pre-serialization functions.

pre_serialization_funcs

dict: The pre-serialization functions.

validation_and_conversion_funcs

dict: The validation and conversion functions.

property core_attrs

dict: The “core attributes”.

The keys of core_attrs are the same as the attribute validation_and_conversion_funcs, which is also a dict object.

Note that core_attrs should be considered read-only.

property de_pre_serialization_funcs

dict: The de-pre-serialization functions.

de_pre_serialization_funcs has the same keys as the attribute validation_and_conversion_funcs, which is also a dict object.

Let validation_and_conversion_funcs and pre_serialization_funcs denote the attributes validation_and_conversion_funcs pre_serialization_funcs respectively, the last of which being a dict object as well.

Let core_attrs_candidate_1 be any dict object that has the same keys as validation_and_conversion_funcs, where for each dict key key in core_attrs_candidate_1, validation_and_conversion_funcs[key](core_attrs_candidate_1) does not raise an exception.

Let serializable_rep be a dict object that has the same keys as core_attrs_candidate_1, where for each dict key key in core_attrs_candidate_1, serializable_rep[key] is set to pre_serialization_funcs[key](core_attrs_candidate_1[key]).

The items of de_pre_serialization_funcs are expected to be set to callable objects that would lead to de_pre_serialization_funcs[key](serializable_rep[key]) not raising an exception for each dict key key in serializable_rep.

Let core_attrs_candidate_2 be a dict object that has the same keys as serializable_rep, where for each dict key key in validation_and_conversion_funcs, core_attrs_candidate_2[key] is set to de_pre_serialization_funcs[key](serializable_rep[key]).

The items of de_pre_serialization_funcs are also expected to be set to callable objects that would lead to validation_and_conversion_funcs[key](core_attrs_candidate_2) not raising an exception for each dict key key in core_attrs_candidate_2.

Note that de_pre_serialization_funcs should be considered read-only.

classmethod de_pre_serialize(serializable_rep={}, skip_validation_and_conversion=False)

Construct an instance from a serializable representation.

Parameters:
serializable_repdict, optional

A dict object that has the same keys as the attribute validation_and_conversion_funcs, which is also a dict object.

Let validation_and_conversion_funcs and de_pre_serialization_funcs denote the attributes validation_and_conversion_funcs de_pre_serialization_funcs respectively, the last of which being a dict object as well.

The items of serializable_rep are expected to be objects that would lead to de_pre_serialization_funcs[key](serializable_rep[key]) not raising an exception for each dict key key in serializable_rep.

Let core_attrs_candidate be a dict object that has the same keys as serializable_rep, where for each dict key key in serializable_rep, core_attrs_candidate[key] is set to de_pre_serialization_funcs[key](serializable_rep[key])``.

The items of serializable_rep are also expected to be set to objects that would lead to validation_and_conversion_funcs[key](core_attrs_candidate) not raising an exception for each dict key key in serializable_rep.

skip_validation_and_conversionbool, optional

Let core_attrs denote the attribute core_attrs, which is a dict object.

If skip_validation_and_conversion is set to False, then for each key key in serializable_rep, core_attrs[key] is set to validation_and_conversion_funcs[key] (core_attrs_candidate), with validation_and_conversion_funcs and core_attrs_candidate_1 being introduced in the above description of serializable_rep.

Otherwise, if skip_validation_and_conversion is set to True, then core_attrs is set to core_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values of core_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.

Returns:
instance_of_current_clsCurrent class

An instance constructed from the serializable representation serializable_rep.

dump(filename='serialized_rep_of_fancytype.json', overwrite=False)

Serialize instance and save the result in a JSON file.

Parameters:
filenamestr, optional

The relative or absolute path to the JSON file in which to store the serialized representation of an instance.

overwritebool, optional

If overwrite is set to False and a file exists at the path filename, then the serialized instance is not written to that file and an exception is raised. Otherwise, the serialized instance will be written to that file barring no other issues occur.

Returns:
dumps()

Serialize instance.

Returns:
serialized_repdict

A serialized representation of an instance.

get_core_attrs(deep_copy=True)

Return the core attributes.

Parameters:
deep_copybool, optional

Let core_attrs denote the attribute core_attrs, which is a dict object.

If deep_copy is set to True, then a deep copy of core_attrs is returned. Otherwise, a shallow copy of core_attrs is returned.

Returns:
core_attrsdict

The attribute core_attrs.

classmethod get_de_pre_serialization_funcs()[source]

Return the de-pre-serialization functions.

Returns:
de_pre_serialization_funcsdict

The attribute de_pre_serialization_funcs.

classmethod get_pre_serialization_funcs()[source]

Return the pre-serialization functions.

Returns:
pre_serialization_funcsdict

The attribute pre_serialization_funcs.

classmethod get_validation_and_conversion_funcs()[source]

Return the validation and conversion functions.

Returns:
validation_and_conversion_funcsdict

The attribute validation_and_conversion_funcs.

classmethod load(filename='serialized_rep_of_fancytype.json', skip_validation_and_conversion=False)

Construct an instance from a serialized representation that is stored in a JSON file.

Users can save serialized representations to JSON files using the method fancytypes.PreSerializable.dump().

Parameters:
filenamestr, optional

The relative or absolute path to the JSON file that is storing the serialized representation of an instance.

filename is expected to be such that json.load(open(filename, "r")) does not raise an exception.

Let serializable_rep=json.load(open(filename, "r")).

Let validation_and_conversion_funcs and de_pre_serialization_funcs denote the attributes validation_and_conversion_funcs de_pre_serialization_funcs respectively, both of which being dict objects as well.

filename is also expected to be such that de_pre_serialization_funcs[key](serializable_rep[key]) does not raise an exception for each dict key key in de_pre_serialization_funcs.

Let core_attrs_candidate be a dict object that has the same keys as de_pre_serialization_funcs, where for each dict key key in serializable_rep, core_attrs_candidate[key] is set to de_pre_serialization_funcs[key](serializable_rep[key])``.

filename is also expected to be such that validation_and_conversion_funcs[key](core_attrs_candidate) does not raise an exception for each dict key key in serializable_rep.

skip_validation_and_conversionbool, optional

Let core_attrs denote the attribute core_attrs, which is a dict object.

Let core_attrs_candidate be as defined in the above description of filename.

If skip_validation_and_conversion is set to False, then for each key key in core_attrs_candidate, core_attrs[key] is set to validation_and_conversion_funcs[key] (core_attrs_candidate), , with validation_and_conversion_funcs and core_attrs_candidate being introduced in the above description of filename.

Otherwise, if skip_validation_and_conversion is set to True, then core_attrs is set to core_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values of core_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.

Returns:
instance_of_current_clsCurrent class

An instance constructed from the serialized representation stored in the JSON file.

classmethod loads(serialized_rep='{}', skip_validation_and_conversion=False)

Construct an instance from a serialized representation.

Users can generate serialized representations using the method dumps().

Parameters:
serialized_repstr | bytes | bytearray, optional

The serialized representation.

serialized_rep is expected to be such that json.loads(serialized_rep) does not raise an exception.

Let serializable_rep=json.loads(serialized_rep).

Let validation_and_conversion_funcs and de_pre_serialization_funcs denote the attributes validation_and_conversion_funcs de_pre_serialization_funcs respectively, both of which being dict objects as well.

serialized_rep is also expected to be such that de_pre_serialization_funcs[key](serializable_rep[key]) does not raise an exception for each dict key key in de_pre_serialization_funcs.

Let core_attrs_candidate be a dict object that has the same keys as serializable_rep, where for each dict key key in de_pre_serialization_funcs, core_attrs_candidate[key] is set to de_pre_serialization_funcs[key](serializable_rep[key])``.

serialized_rep is also expected to be such that validation_and_conversion_funcs[key](core_attrs_candidate) does not raise an exception for each dict key key in serializable_rep.

skip_validation_and_conversionbool, optional

Let core_attrs denote the attribute core_attrs, which is a dict object.

If skip_validation_and_conversion is set to False, then for each key key in core_attrs_candidate, core_attrs[key] is set to validation_and_conversion_funcs[key] (core_attrs_candidate), with validation_and_conversion_funcs and core_attrs_candidate_1 being introduced in the above description of serialized_rep.

Otherwise, if skip_validation_and_conversion is set to True, then core_attrs is set to core_attrs_candidate.copy(). This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values of core_attrs_candidate, as it is guaranteed that no copies or conversions are made in this case.

Returns:
instance_of_current_clsCurrent class

An instance constructed from the serialized representation.

property pre_serialization_funcs

dict: The pre-serialization functions.

pre_serialization_funcs has the same keys as the attribute validation_and_conversion_funcs, which is also a dict object.

Let validation_and_conversion_funcs and core_attrs denote the attributes validation_and_conversion_funcs and core_attrs respectively, the last of which being a dict object as well.

For each dict key key in core_attrs, pre_serialization_funcs[key](core_attrs[key]) is expected to yield a serializable object, i.e. it should yield an object that can be passed into the function json.dumps without raising an exception.

Note that pre_serialization_funcs should be considered read-only.

pre_serialize()

Pre-serialize instance.

Returns:
serializable_repdict

A serializable representation of an instance.

update(new_core_attr_subset_candidate={}, skip_validation_and_conversion=False)

Update a subset of the core attributes.

Parameters:
new_core_attr_subset_candidatedict, optional

A dict object.

skip_validation_and_conversionbool, optional

Let validation_and_conversion_funcs and core_attrs denote the attributes validation_and_conversion_funcs and core_attrs respectively, both of which being dict objects.

If skip_validation_and_conversion is set to False, then for each key key in core_attrs that is also in new_core_attr_subset_candidate, core_attrs[key] is set to validation_and_conversion_funcs[key] (new_core_attr_subset_candidate).

Otherwise, if skip_validation_and_conversion is set to True, then for each key key in core_attrs that is also in new_core_attr_subset_candidate, core_attrs[key] is set to new_core_attr_subset_candidate[key]. This option is desired primarily when the user wants to avoid potentially expensive deep copies and/or conversions of the dict values of new_core_attr_subset_candidate, as it is guaranteed that no copies or conversions are made in this case.

property validation_and_conversion_funcs

dict: The validation and conversion functions.

The keys of validation_and_conversion_funcs are the names of the constructor parameters, excluding skip_validation_and_conversion if it exists as a construction parameter.

Let core_attrs denote the attribute core_attrs, which is also a dict object.

For each dict key key in core_attrs, validation_and_conversion_funcs[key](core_attrs) is expected to not raise an exception.

Note that validation_and_conversion_funcs should be considered read-only.