2.1. distoptica.apply_coord_transform
- apply_coord_transform(u_x=((0.5,),), u_y=((0.5,),), coord_transform_params=None, device=None, skip_validation_and_conversion=False)[source]
Apply a coordinate transformation to a set of coordinates of points in an undistorted image.
The current Python function applies a coordinate transformation to a set of fractional coordinates of points in an undistorted image. For a discussion on fractional coordinates of points in undistorted images, see the summary documentation for the class
distoptica.DistortionModel
. For a discussion on coordinate transformations, see the summary documentation for the classesdistoptica.DistortionModel
,distoptica.CoordTransformParams
, anddistoptica.StandardCoordTransformParams
.- Parameters:
- u_xtorch.Tensor (float, ndim=2), optional
The set of fractional horizontal coordinates of the points in the undistorted image, for which to apply the coordinate transformation.
- u_ytorch.Tensor (float, shape=``u_x.shape``), optional
The set of fractional vertical coordinates of the points in the undistorted image, for which to apply the coordinate transformation.
- coord_transform_params
distoptica.CoordTransformParams
, optional The parameters defining the coordinate transformation to apply.
- devicetorch.device | None, optional
This parameter specifies the device to be used to perform computationally intensive calls to PyTorch functions. If
device
is of the typetorch.device
, thendevice
represents the device to be used. Ifdevice
is set toNone
and a GPU device is available, then a GPU device is to be used. Otherwise, the CPU is used.- skip_validation_and_conversionbool, optional
If
skip_validation_and_conversion
is set toFalse
, then validations and conversions are performed on the above parameters.Otherwise, if
skip_validation_and_conversion
is set toTrue
, no validations and conversions are performed on the above parameters. This option is desired primarily when the user wants to avoid potentially expensive validation and/or conversion operations.
- Returns:
- q_xtorch.Tensor (float, shape=``u_x.shape``)
The set of fractional horizontal coordinates resulting from the application of the coordinate transformation. For every row index
i
and column indexj`, the coordinate pair ``(u_x[i, j], u_y[i, j])
maps to the horizontal coordinateq_x[i, j]
via the corresponding component of the coordinate transformation.- q_ytorch.Tensor (float, shape=``u_y.shape``)
The set of fractional vertical coordinates resulting from the application of the coordinate transformation. For every row index
i
and column indexj`, the coordinate pair ``(u_x[i, j], u_y[i, j])
maps to the vertical coordinateq_y[i, j]
via the corresponding component of the coordinate transformation.